Special Topics in Geometry (MAE822): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
|||
(3 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Ειδικά Θέματα Γεωμετρίας (ΜΑE822)|Ελληνική Έκδοση]] | ||
{{Course-UnderGraduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === |
Τελευταία αναθεώρηση της 12:37, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Undergraduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE822 |
Semester |
8 |
Course Title |
Special Topics in Geometry |
Independent Teaching Activities |
Lectures, laboratory exercises (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek, English |
Is the Course Offered to Erasmus Students |
Yes |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
This course introduces the notion of differential forms. The aim of the course is to prove Stokes theorem for manifolds with boundary and to provide applications in differential geometry as well as in other areas of mathematics. The course requires tools from linear algebra, calculus of several variables, topology and elementary differential geometry. On completion of the course the student should be familiar with differential forms and the meaning of Stokes theorem. |
---|---|
General Competences |
|
Syllabus
Differential forms in Euclidean space, line integrals, differentiable manifolds (with or without boundary), integration of differential forms on manifolds, theorem of Stokes and applications, Poincare lemma, differential geometry of surfaces, structure equations.
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems. |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
- M. do Carmo, Διαφορικές Μορφές, Θεωρία και Εφαρμογές, Prentice-Hall, Πανεπιστημιακές Εκδόσεις Κρήτης, 2010.