Θέματα Συναρτήσεων Μίας Μεταβλητής (MAE515): Διαφορά μεταξύ των αναθεωρήσεων
μ (Ο Mathwikiadmin μετακίνησε τη σελίδα Ειδικά Θέματα Απειροστικού Λογισμού (MAE752) στην Θέματα Συναρτήσεων Μίας Μεταβλητής (MAE515) χωρίς να αφήσει ανακατεύθυνση) |
|||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Topics in Functions of One Variable (MAE515)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | {{Menu-OnAllPages-GR}} | ||
Γραμμή 17: | Γραμμή 17: | ||
|- | |- | ||
! Κωδικός Μαθήματος | ! Κωδικός Μαθήματος | ||
| | | MAE515 | ||
|- | |- | ||
! Εξάμηνο | ! Εξάμηνο | ||
| | | 5 | ||
|- | |- | ||
! Τίτλος Μαθήματος | ! Τίτλος Μαθήματος | ||
| | | Θέματα Συναρτήσεων Μίας Μεταβλητής | ||
|- | |- | ||
! Αυτοτελείς Διδακτικές Δραστηριότητες | ! Αυτοτελείς Διδακτικές Δραστηριότητες | ||
Γραμμή 59: | Γραμμή 59: | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
Μονότονες συναρτήσεις- | Μονότονες συναρτήσεις - σημεία συνέχειας, συναρτήσεις φραγμένης κύμανσης, σύνολα μηδενικού μέτρου, θεώρημα Lebesgue( κάθε μονότονη συνάρτηση διαφορίζεται σχεδόν παντού), Darboux συνεχείς συναρτήσεις-ορισμοί, ιδιότητες, ισοδύναμοι χαρακτηρισμοί, κυρτές συναρτήσεις, ημισυνεχείς συναρτήσεις, σημεία συνέχειας Riemann ολοκληρώσιμης συνάρτησης, κλάσεις του Baire, Borel μετρήσιμες συναρτήσεις, αναλυτικά σύνολα, ισοδύναμοι χαρακτηρισμοί, σύνδεση με Borel σύνολα-σχετική θεωρία, ολοκλήρωμα Lebesgue, ολοκλήρωμα Stieltjes. | ||
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | === Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === |
Τελευταία αναθεώρηση της 18:23, 17 Αυγούστου 2024
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE515 |
Εξάμηνο | 5 |
Τίτλος Μαθήματος | Θέματα Συναρτήσεων Μίας Μεταβλητής |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Οι στόχοι του μαθήματος είναι η απόκτηση ειδικών γνώσεων στην θεωρία πραγματικών συναρτήσεων |
---|---|
Γενικές Ικανότητες |
Το μάθημα αποσκοπεί στην απόκτηση της ικανότητας από τον προπτυχιακό φοιτητή στην ανάλυση και σύνθεση βασικών γνώσεων της θεωρίας των πραγματικών συναρτήσεων. |
Περιεχόμενο Μαθήματος
Μονότονες συναρτήσεις - σημεία συνέχειας, συναρτήσεις φραγμένης κύμανσης, σύνολα μηδενικού μέτρου, θεώρημα Lebesgue( κάθε μονότονη συνάρτηση διαφορίζεται σχεδόν παντού), Darboux συνεχείς συναρτήσεις-ορισμοί, ιδιότητες, ισοδύναμοι χαρακτηρισμοί, κυρτές συναρτήσεις, ημισυνεχείς συναρτήσεις, σημεία συνέχειας Riemann ολοκληρώσιμης συνάρτησης, κλάσεις του Baire, Borel μετρήσιμες συναρτήσεις, αναλυτικά σύνολα, ισοδύναμοι χαρακτηρισμοί, σύνδεση με Borel σύνολα-σχετική θεωρία, ολοκλήρωμα Lebesgue, ολοκλήρωμα Stieltjes.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Διαλέξεις-παρουσιάσεις στην αίθουσα. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- A.C.M. Van Rooij, W.H. Schikhof, Α second course on real functions, Cambridge University Press.