Μιγαδικές Συναρτήσεις II (MAE712): Διαφορά μεταξύ των αναθεωρήσεων
(Νέα σελίδα με '* English version {{Course-UnderGraduate-Top-GR}} {{Menu-OnAllPages-GR}} === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE712 |- ! Εξάμηνο | 7 |- ! Τίτλος Μαθήματος | Μιγαδικές Συναρτήσε...') |
|||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Complex Functions II (MAE712)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | {{Menu-OnAllPages-GR}} | ||
Γραμμή 50: | Γραμμή 50: | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| | | | ||
Το μάθημα εμβαθύνει στις ιδιότητες των μιγαδικών, και ιδιαίτερα των ολόμορφων και μερόμορφων, συναρτήσεων, με σκοπό την εξαγωγή χαρακτηριστικών για αυτές αποτελεσμάτων που τις διακρίνουν από τις πραγματικές συναρτήσεις. Οι φοιτητές εφαρμόζουν τις γνώσεις και τεχνικές που | Το μάθημα εμβαθύνει στις ιδιότητες των μιγαδικών, και ιδιαίτερα των ολόμορφων και μερόμορφων, συναρτήσεων, με σκοπό την εξαγωγή χαρακτηριστικών για αυτές αποτελεσμάτων που τις διακρίνουν από τις πραγματικές συναρτήσεις. Οι φοιτητές εφαρμόζουν τις γνώσεις και τεχνικές που απόκτησαν στο εισαγωγικό μάθημα για να εξαγάγουν πιο σύνθετα αποτελέσματα τόσο εντός της Μιγαδικής Ανάλυσης όσο και αναφορικά με τη διασύνδεσή της με άλλες περιοχές των Μαθηματικών, όπως η Γεωμετρία, η Τοπολογία και οι Μερικές Διαφορικές Εξισώσεις, και εξασκούνται στη σύνθεση απλούστερων αποτελεσμάτων για την εξαγωγή βαθύτερων. | ||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες |
Τελευταία αναθεώρηση της 15:41, 15 Ιανουαρίου 2025
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE712 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | Μιγαδικές Συναρτήσεις II |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Το μάθημα εμβαθύνει στις ιδιότητες των μιγαδικών, και ιδιαίτερα των ολόμορφων και μερόμορφων, συναρτήσεων, με σκοπό την εξαγωγή χαρακτηριστικών για αυτές αποτελεσμάτων που τις διακρίνουν από τις πραγματικές συναρτήσεις. Οι φοιτητές εφαρμόζουν τις γνώσεις και τεχνικές που απόκτησαν στο εισαγωγικό μάθημα για να εξαγάγουν πιο σύνθετα αποτελέσματα τόσο εντός της Μιγαδικής Ανάλυσης όσο και αναφορικά με τη διασύνδεσή της με άλλες περιοχές των Μαθηματικών, όπως η Γεωμετρία, η Τοπολογία και οι Μερικές Διαφορικές Εξισώσεις, και εξασκούνται στη σύνθεση απλούστερων αποτελεσμάτων για την εξαγωγή βαθύτερων. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Το μάθημα αποτελεί συνέχεια του εισαγωγικού υποχρεωτικού μαθήματος Μιγαδικές Συναρτήσεις Ι. Πραγματεύεται κλασικά θεωρητικά αποτελέσματα που χαρακτηρίζουν τη Μιγαδική Ανάλυση και αναδεικνύουν διασυνδέσεις της με άλλες περιοχές των Μαθηματικών. Ενδεικτικά αναφέρονται τα ακόλουθα θέματα: Σύμμορφες απεικονίσεις. Αρμονικές συναρτήσεις. Ομοτοπία. Αναλυτική επέκταση. Ομολογικά απλά συνεκτικοί τόποι. Γενίκευση του Ολοκληρωτικού Θεωρήματος του Cauchy. Αρχή Μεγίστου. Λήμμα Schwarz. Θεωρήματα Σύγκλισης Ακολουθιών Ολόμορφων Συναρτήσεων. Ανάλυση σε απλά κλάσματα. Απειρογινόμενα. Θεώρημα Απεικόνισης Riemann.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο, αλλά και με άλλες μεθόδους (π.χ. μέσω παρουσιάσεων των φοιτητών), κατά την κρίση του διδάσκοντα. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση της ιστοσελίδας του μαθήματος για την παροχή υλικού και για επικοινωνία με τους φοιτητές. | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
Κατά την κρίση του διδάσκοντα. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- L. V. Ahlfors. Complex Analysis. Third Edition. McGraw-Hill, 1979.
- K. Jaenich. Funktionentheorie. Eine Einfuehrung. Sechste Auflage. Springer, 2011.
- S. Lang. Complex Analysis. Fourth Edition. Springer, 1999.
- Σ. Κ. Μερκουράκης, Τ. Ε. Χατζηαφράτης. Εισαγωγή στη Μιγαδική Ανάλυση. Εκδόσεις Συμμετρία, 2005.
- R. Remmert. Theory of Complex Functions. Springer, 1998.
- R. Remmert. Classical Topics in Complex Function Theory. Springer, 1998.