Αποδοτικοί Αλγόριθμοι (ΜΑΕ748): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
 
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
* [[Efficient Algorithms (MAE748)|English version]]
* [[Efficient Algorithms (MAE748)|English version]]
* [[Περιγράμματα Προπτυχιακών Μαθημάτων]]
{{Course-UnderGraduate-Top-GR}}
* [https://math.uoi.gr Τμήμα Μαθηματικών]
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===
Γραμμή 28: Γραμμή 28:
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
|-
|-
! Τύπος Μαθήματος
! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]]
| Ειδικού Υποβάθρου
| Ειδίκευσης
|-
|-
! Προαπαιτούμενα Μαθήματα
! Προαπαιτούμενα Μαθήματα

Τελευταία αναθεώρηση της 10:08, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE748
Εξάμηνο 7
Τίτλος Μαθήματος Αποδοτικοί Αλγόριθμοι
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα

Ο κύριος σκοπός του μαθήματος είναι η εισαγωγή σε προχωρημένες αλγοριθμικές έννοιες και τεχνικές. Εξετάζονται προχωρημένα προβλήματα βελτιστοποίησης και δίνεται έμφαση στη μελέτη βασικών αλγοριθμικών τεχνικών για την επίλυση τους. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής ή η φοιτήτρια θα είναι σε θέση να:

  • εφαρμόσει προχωρημένες αλγοριθμικές τεχνικές και μεθόδους για την επίλυση προχωρημένων προβλημάτων βελτιστοποίησης,
  • κατανοήσει και εφαρμόσει προχωρημένες μεθόδους αλγοριθμικής ανάλυσης για την μελέτη της αποδοτικότητας αλγορίθμων,
  • να αναλύσει κριτικά και να συγκρίνει την αποτελεσματικότητα διαφόρων αλγοριθμικών μεθόδων,
  • συνδυάσει προχωρημένες αλγοριθμικές τεχνικές για την επίλυση νέων προβλημάτων.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών
  • Προσαρμογή σε νέες καταστάσεις
  • Άσκηση κριτικής και αυτοκριτικής
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

Περιεχόμενο Μαθήματος

Εισαγωγικές έννοιες: Ανάλυση αλγορίθμων (ορθότητα, χρονική πολυπλοκότητα, πολυπλοκότητα χώρου), ασυμπτωτική ανάλυση (χείριστης και μέσης περίπτωσης), Αναδρομικοί αλγόριθμοι (ο αλγόριθμος του Strassen για το πρόβλημα του πολλαπλασιασμού πινάκων), κάτω φράγματα (το πρόβλημα της ταξινόμησης με συγκρίσεις, το πρόβλημα του κυρτού περιγράμματος). Επιμερισμένη ανάλυση: Η μέθοδος του τραπεζίτη, η μέθοδος του αθροίσματος, η μέθοδος του δυναμικού. Το πρόβλημα της εύρεσης ελάχιστων διασυνδετικών δένδρων: Οι άπληστοι αλγόριθμοι των Tarjan, Prin και Kruskal. Το πρόβλημα της εύρεσης ελάχιστων τομών: Ο αλγόριθμος των Stoer and Wagner. Το πρόβλημα της εύρεσης μέγιστων ροών: Θεμελιώδεις έννοιες (δίκτυο ροής, επαυξάνον μονοπάτι, υπολειπόμενο δίκτυο) το θεώρημα max-flow min-cut, οι αλγόριθμοι των Ford και Fulkerson, Edmonds και Karp, και Dinitz. Επίπεδα γραφήματα: Βασικές έννοιες, ο τύπος του Euler, το θεώρημα του Kurantowski, το θεώρημα των 5-χρωμάτων, απεικονίσεις επίπεδων γραφημάτων: ο αλγόριθμος των de Fraysseix, Pach και Pollack, ένα κάτω φράγμα για το πλήθος των διασταυρώσεων (crossing Lemma). Προσεγγιστικοί αλγόριθμοι: απλοί αλγόριθμοι σταθερού προσεγγιστικού παράγοντα, ο αλγόριθμος του Χριστοφίδη για το πρόβλημα το πλανόδιου πωλητή (traveling salesman problem), προσεγγιστικά σχήματα για τα προβλήματα του σακιδίου (knapsack) και της πακετοποίησης (bin packing). Τυχαιοκρατικοί αλγόριθμοι: απλοί τυχαικρατικοί αλγόριθμοι για τα προβλήματα της επαλήθευσης πολυωνυμικών ταυτοτήτων και 2-SAT, τυχαίοι περίπατοι.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών

Στην ιστοσελίδα του μαθήματος στο ecourse διατίθεται υλικό μελέτης και πληροφοριών (σημειώσεις και διαφάνειες). Δυνατότητα επικοινωνίας των φοιτητών με τον διδάσκοντα με ηλεκτρονικό τρόπο (e-mail, ecourse).

Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών

Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα). Εκπόνηση δύο εργασιών.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • ---