Απειροστικός Λογισμός IV (MAY411): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(5 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Infinitesimal Calculus IV (MAY411)|English version]] | * [[Infinitesimal Calculus IV (MAY411)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 29: | Γραμμή 28: | ||
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) | | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) | ||
|- | |- | ||
! Τύπος Μαθήματος | ! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]] | ||
| | | Επιστημονικής Περιοχής | ||
|- | |- | ||
! Προαπαιτούμενα Μαθήματα | ! Προαπαιτούμενα Μαθήματα |
Τελευταία αναθεώρηση της 09:59, 15 Ιουνίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY411 |
Εξάμηνο | 4 |
Τίτλος Μαθήματος | ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Επιστημονικής Περιοχής |
Προαπαιτούμενα Μαθήματα | Δεν υπάρχουν. |
Γλώσσα Διδασκαλίας και Εξετάσεων |
|
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στα παρακάτω χρησιμοποιείται η σύντμηση ΔΣπΜ για να δηλώσει την Διανυσματική Συνάρτηση πολλών Μεταβλητών.
Μαθησιακά αποτελέσματα με βάση την Ταξινόμηση κατά Bloom:
Κατανόηση:
Εφαρμογή:
Αξιολόγηση: Διδασκαλία μαθημάτων λυκειακού και πανεπιστημιακού επιπέδου. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Ορισμός του πολλαπλού ολοκληρώματος μέσω των άνω και κάτω αθροισμάτων σε κλειστά ορθογώνια, σύνολα μηδενικού μέτρου, Κριτήριο Ολοκληρωσιμότητας του Lebesque, Jordan-μετρήσιμα σύνολα και ορισμός του ολοκληρώματος πάνω από αυτά, Θεώρημα Fubini, Αρχή του Cavalieri, κανονικά χωρία σε δύο και τρεις διαστάσεις, αλλαγή μεταβλητών και τα βασικά παραδείγματα τους, υπολογισμός πολλαπλών ολοκληρωμάτων με χρήση των παραπάνω μεθόδων.
- Ορισμός επικαμπυλίων ολοκληρωμάτων για παραμετρικές συναρτήσεις και διανυσματικά πεδία, ορισμός μήκους καμπύλης, παραμετρικές καμπύλες, παραμετρικοί μετασχηματισμοί, πεδία κλίσεων και επικαμπύλια ολοκληρώματα ανεξάρτητα του δρόμου, Θεώρημα Green.
- Επιφάνειες και παραμετροποίηση επιφανειακών ολοκληρωμάτων. Ορισμός επιφανειακού ολοκληρώματος πραγματικής συνάρτησης και διανυσματικού πεδίου. Εμβαδό επιφανείας. Θεωρήματα Stokes και Gauss.
- Στοιχεία ομοιόμορφης σύγκλησης ακολουθιών και σειρών συναρτήσεων. Στοιχεία σειρών Fourier.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης |
| ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γλώσσα αξιολόγησης: Ελληνικά και Αγγλικά. Διαδικασία αξιολόγησης των φοιτητών:
Όλα τα προαναφερθέντα, συμπεριλαμβανομένων όλων των σχετικών κριτηρίων, αναγράφονται λεπτομερώς στην ιστοσελίδα του μαθήματος. Γίνεται επεξήγηση τους, στα πλαίσια των διαλέξεων, κατά την αρχή του εξαμήνου και, σε τακτά χρονικά διαστήματα, κατά τη διάρκεια του εξαμήνου. Γίνονται ενημερώσεις και υπενθυμίσεις μέσω της ιστοσελίδας του μαθήματος κατά την αρχή του εξαμήνου και, σε τακτά χρονικά διαστήματα, κατά τη διάρκεια του εξαμήνου. Παρέχονται όσες διευκρινίσεις ζητηθούν μέσω email ή ιστοχώρων κοινωνικής δικτύωσης και των εφαρμογών τους. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- ---