Αριθμητική Επίλυση Συνήθων Διαφορικών Εξισώσεων (ΜΑΕ744): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Numerical Solution of Ordinary Differential Equations (MAE744)|English version]] | * [[Numerical Solution of Ordinary Differential Equations (MAE744)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 27: | Γραμμή 28: | ||
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | ||
|- | |- | ||
! Τύπος Μαθήματος | ! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]] | ||
| | | Ειδίκευσης | ||
|- | |- | ||
! Προαπαιτούμενα Μαθήματα | ! Προαπαιτούμενα Μαθήματα |
Τελευταία αναθεώρηση της 10:08, 15 Ιουνίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE744 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΣΥΝΗΘΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Ανασκόπηση βασικών αποτελεσμάτων ύπαρξης και μοναδικότητας λύσης για προβλήματα αρχικών τιμών για Σ.Δ.Ε.
- Αριθμητική επίλυση του προβλήματος αρχικών τιμών για Σ.Δ.E. με την άμεση και την πεπλεγμένη μέθοδο του Euler.
- Συνέπεια, ευστάθεια, και σύγκλιση των μεθόδων Runge-Kutta.
- Συνέπεια, ευστάθεια, και σύγκλιση των πολυβηματικών μεθόδων.
- Εφαρμογές σε προβλήματα από Φυσική και Βιολογία.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- “Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations”, E. Hairer, & C. Lubich, Springer, 2010.
- “Numerical Methods for Ordinary Differential Equations: Initial Value Problems”, D.F. Griffiths, & D. J. Higham, Springer, 2010.