Μετροθεωρητική Θεωρία Πιθανοτήτων (ΜΑΕ717): Διαφορά μεταξύ των αναθεωρήσεων
μ (Ο Mathwikiadmin μετακίνησε τη σελίδα Μετροθεωρητική Θεωρία Πιθανοτήτων στην Μετροθεωρητική Θεωρία Πιθανοτήτων (ΜΑΕ717) χωρίς να αφήσει ανακατεύθυνση) |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Measure Theoretic Probability (MAE717)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 27: | Γραμμή 28: | ||
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | ||
|- | |- | ||
! Τύπος Μαθήματος | ! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]] | ||
| | | Ειδίκευσης | ||
|- | |- | ||
! Προαπαιτούμενα Μαθήματα | ! Προαπαιτούμενα Μαθήματα |
Τελευταία αναθεώρηση της 22:59, 20 Σεπτεμβρίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE717 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | Μετροθεωρητική Θεωρία Πιθανοτήτων |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Το αντικείμενο της Θεωρίας Πιθανοτήτων είναι η μελέτη φυσικών φαινομένων στα οποία υπεισέρχεται τυχαιότητα. Αντικείμενο του μαθήματος είναι η εισαγωγή των φοιτητών στην αυστηρά θεμελιωμένη Θεωρία Πιθανοτήτων και η απόδειξη των κεντρικότερων αποτελεσμάτων της σε γενικότητα κατάλληλη για το επίπεδο των προπτυχιακών σπουδών. Συγκεκριμένα μετά το τέλος του μαθήματος οι φοιτητές θα γνωρίζουν:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Θεμελίωση Θεωρίας Πιθανοτήτων: Χώροι πιθανότητας, τυχαίες μεταβλητές ως μετρήσιμες συναρτήσεις, Borel (σ)-άλγεβρες, κατανομή τυχαίων μεταβλητών, το (π)-(λ) θεώρημα του Dynkin και ισότητα μέτρων. Μέση τιμή: Η μέση τιμή ως ολοκλήρωμα Lebesgue, Χώροι (Lp), μέτρο εικόνα, ολοκλήρωση ως προς μέτρα εικόνα, η συνάρτηση πυκνότητας ως Radon-Nikodym παράγωγος της κατανομής, συναρτήσεις κατανομής. Ανισότητα Markov-Chebyshev, ανισότητα Jensen. Ροπογεννήτριες συναρτήσεις, φράγματα Chernoff. Κατά πιθανότητα και κατά σημείο σύγκλιση τυχαίων μεταβλητών και θεωρήματα σύγκλισης. Στοχαστική ανεξαρτησία 1: Στοχαστική ανεξαρτησία συνόλων, (σ)-αλγεβρών και τυχαίων μεταβλητών, κριτήριο ανεξαρτησίας μέσω (π)-συστημάτων. Ανεξαρτησία και μέση τιμή, συνέλιξη και άθροισμα ανεξάρτητων τυχαίων μεταβλητών. Τα λήμματα Borel-Cantelli και ο νόμος (0)-(1) του Kolomogorov. Νόμος των μεγάλων Αριθμών: Απόδειξη του ασθενούς νόμου των μεγάλων αριθμών, απόδειξη του ισχυρού νόμου των μεγάλων αριθμών για τετραγωνικά ολοκληρώσιμες τ.μ. Ασθενής σύγκλιση τυχαίων μεταβλητών και κατανομών και εμπειρικός νόμος των μεγάλων αριθμών. Στοχαστική ανεξαρτησία 2: Άπειρο γινόμενο χώρων πιθανότητας, κατασκευές ανεξάρτητων και ισόνομων τ.μ. με δεδομένη κατανομή, απόδειξη της ερμηνείας της πιθανότητας ως σχετική συχνότητα μέσω του νόμου των μεγάλων αριθμών. Δεσμευμένη μέση τιμή: Ύπαρξη ως Radon-Nikodym παράγωγος, ύπαρξη ως προβολή, βασικές ιδιότητες και θεωρήματα σύγκλισης για τη δεσμευμένη μέση τιμή, το θεώρημα της διάσπασης. Ισόρροπες ακολουθίες (martingales): Διηθήσεις, προσαρμοσμένες ακολουθίες, ορισμός ισορροπημένων διαδικασιών και παραδείγματα, χρόνοι στάσης, θεώρημα επιλεκτικής στάσης του Doob, το θεώρημα σύγκλισης, τετραγωνικά ολοκληρώσιμες ισορροπημένες ακολουθίες, απόδειξη του νόμου των μεγάλων αριθμών μέσω ισόρροπων διαδικασιών. Κεντρικό Οριακό Θεώρημα: Χαρακτηριστικές συναρτήσεις, το θεώρημα σύγκλισης του Levy για την ασθενή σύγκλιση, απόδειξη του κεντρικού οριακού θεωρήματος.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Διαλέξεις | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | - | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Η αξιολόγηση των φοιτητών θα γίνει με εβδομαδιαίες ασκήσεις, πρόοδο και τελική εξέταση. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- David Williams, Probability with Martingales of Cambridge Mathematical Textbooks, Cambridge University Press, 1990.
- S.R.S. Varadhan, Probability Theory volume 7 of Courant Lecture Notes in Mathematics, American Mathematical Society, 2001.
- R.M. Dudley, Real Analysis and Probability volume 74 of Cambridge studies in advanced mathematics, Cambridge University Press, 2002.
- Heinz Bauer, Probability Theory and Elements of Measure Theory, 2nd edition, Probability and Mathematical Statistics, Academic Press, 1997.
- Heinz Bauer, Probability Theory, Philosophie Und Wissenschaft (de Gruyter Studies in Mathematics), 1996.
- B. Fristedt and L. Gray, A Modern Approach to Probability Theory, Probability and Its Applications, Birkhauser, 1997.