Στοχαστικές Διαδικασίες (ΜΑΕ532): Διαφορά μεταξύ των αναθεωρήσεων
(6 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Stochastic Processes (MAE532)|English version]] | * [[Stochastic Processes (MAE532)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 50: | Γραμμή 51: | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| | | | ||
Οι στοχαστικές διαδικασίες εισάγουν την έννοια του χρόνου (διακριτού ή συνεχούς) στα τυχαιοκρατικά φαινόμενα που περιγράφει η Θεωρία Πιθανοτήτων και είναι το κατάλληλο εργαλείο για τη μελέτη, ποιοτική και ποσοτική, δυναμικών φαινομένων στα οποία υπεισέρχεται τυχαιότητα. Σκοπός του μαθήματος είναι να παρουσιαστεί σε προπτυχιακό επίπεδο μια εισαγωγή στις στοχαστικές διαδικασίες και στις ιδιότητες τους, ενώ ταυτόχρονα θα δίνονται διάφορα παραδείγματα και εφαρμογές. | Οι στοχαστικές διαδικασίες εισάγουν την έννοια του χρόνου (διακριτού ή συνεχούς) στα τυχαιοκρατικά φαινόμενα που περιγράφει η Θεωρία Πιθανοτήτων και είναι το κατάλληλο εργαλείο για τη μελέτη, ποιοτική και ποσοτική, δυναμικών φαινομένων στα οποία υπεισέρχεται τυχαιότητα. Σκοπός του μαθήματος είναι να παρουσιαστεί σε προπτυχιακό επίπεδο μια εισαγωγή στις στοχαστικές διαδικασίες και στις ιδιότητες τους, ενώ ταυτόχρονα θα δίνονται διάφορα παραδείγματα και εφαρμογές. Ιδιαίτερο βάρος θα δοθεί στην μελέτη των Μαρκοβιανών διαδικασιών διακριτού και συνεχούς χρόνου. Εκτός από την λεπτομερή μελέτη των βασικών θεωρητικών αποτελεσμάτων, θα δοθεί έμφαση και στην μαθηματική μοντελοποίηση προβλημάτων τα οποία μπορούν να μελετηθούν με την βοήθεια των Μαρκοβιανών αλυσίδων. Εφόσον το επιτρέψει ο χρόνος, θα επιχειρηθεί μια εισαγωγή στις ανανεωτικές διαδικασίες και στις εφαρμογές αυτών σε προβλήματα της θεωρία αξιοπιστίας. | ||
Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής/τρια θα είναι σε θέση να: | |||
* προτυποποιεί και να αναλύει ακολουθίες διακριτών γεγονότων πουσυμβαίνουν τυχαία στον χρόνο. | |||
* κατέχει ένα στέρεο υπόβαθρο στη βασική θεωρία των στοχαστικών διαδικασιών και συγκεκριμένα στη μελέτη Μαρκοβιανών αλυσίδων διακριτού και συνεχούς χρόνου, διαδικασιών γεννήσεων-θανάτων κα τυχαίων περιπάτων. | |||
* μοντελοποιεί προβλήματα που εμφανίζονται στον χώρο των στοχαστικών διαδικασιών | |||
* κατέχει υπολογιστικές δεξιότητες για την επίλυση αντίστοιχων προβλημάτων της Στοχαστικής Επιχειρησιακής Έρευνας. | |||
* Χρήση MATLAB, Rστον υπολογισμό βασικών χαρακτηριστικών. | |||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες | ||
| | | | ||
* Αυτόνομη εργασία | * Αυτόνομη εργασία | ||
* Λήψη αποφάσεων | * Λήψη αποφάσεων | ||
* Εργασία σε διεπιστημονικό περιβάλλον | |||
* Άσκηση κριτικής και αυτοκριτικής. | |||
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης | * Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης | ||
|} | |} | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
Γενικά περί στοχαστικών διαδικασιών. Τυχαίοι περίπατοι, το πρόβλημα της καταστροφής του παίκτη. Μαρκοβιανές αλυσίδες σε διακριτό χρόνο. Μοντελοποίηση προβλημάτων, Χρονικά εξαρτημένη συμπεριφορά: μεταβατική κατανομή, χρόνοι καταλήψεων, Ανάλυση 1ου βήματος, χρόνοι 1ης εισόδου και 1ης επανόδου, Ταξινόμηση καταστάσεων, επισκέψεις σε συγκεκριμένη κατάσταση, Αδιαχώρισιμότητα και διαχωρισιμότητα, επαναληπτικότητα, περιοδικότητα καταστάσεων. Υπολογισμός στάσιμης κατανομής, Οριακή συμπεριφορά: βασικά οριακά θεωρήματα και οριακή κατανομή, Χρονικά αντιστρέψιμες αλυσίδες (timereversibility). Μαρκοβιανές αλυσίδες με κόστη και αμοιβές. Χρήση MATLAB, R στον υπολογισμό βασικών χαρακτηριστικών. Μαρκοβιανές αλυσίδες σε συνεχή χρόνο. Απειροστός γεννήτορας, εξισώσεις Chapman-Kolmogorov, οριακή συμπεριφορά καταστάσεων. Διαδικασία Poisson, διαδικασία γεννήσεων-θανάτoυ. Εφαρμογές στην θεωρία συστημάτων εξυπηρέτησης και στην θεωρία αξιοπιστίας. | |||
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | === Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | ||
Γραμμή 72: | Γραμμή 81: | ||
|- | |- | ||
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | ! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | ||
| Χρήση | | | ||
* Υποστήριξη μαθησιακής διαδικασίας μέσω της ιστοσελίδας και της ηλεκτρονικής πλατφόρμας (eCourse). | |||
* Χρήση προβολικού (προτζέκτορας) και διαφανειών. | |||
* Επικοινωνία με τους/τις φοιτητές/τριες μέσω email αλλά και πλατφορμών όπως το GoogleMeet και το MSTeams. | |||
|- | |- | ||
! Οργάνωση Διδασκαλίας | ! Οργάνωση Διδασκαλίας | ||
Γραμμή 94: | Γραμμή 106: | ||
|- | |- | ||
! Αξιολόγηση Φοιτητών | ! Αξιολόγηση Φοιτητών | ||
| Γραπτή τελική εξέταση | | | ||
Γλώσσα Αξιολόγησης: Ελληνική | |||
Γλώσσα Αξιολόγησης για Φοιτητές Erasmus: Αγγλικά | |||
Μέθοδοι Αξιολόγησης: Γραπτή τελική εξέταση (100%) που περιλαμβάνει Θεωρία και Επίλυση ασκήσεων. | |||
|} | |} | ||
Τελευταία αναθεώρηση της 06:13, 20 Αυγούστου 2024
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE532 |
Εξάμηνο | 5 |
Τίτλος Μαθήματος | ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα |
Συνίστανται: Εισαγωγή στις Πιθανότητες, Θεωρία Πιθανοτήτων και Στατιστικής. |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Οι στοχαστικές διαδικασίες εισάγουν την έννοια του χρόνου (διακριτού ή συνεχούς) στα τυχαιοκρατικά φαινόμενα που περιγράφει η Θεωρία Πιθανοτήτων και είναι το κατάλληλο εργαλείο για τη μελέτη, ποιοτική και ποσοτική, δυναμικών φαινομένων στα οποία υπεισέρχεται τυχαιότητα. Σκοπός του μαθήματος είναι να παρουσιαστεί σε προπτυχιακό επίπεδο μια εισαγωγή στις στοχαστικές διαδικασίες και στις ιδιότητες τους, ενώ ταυτόχρονα θα δίνονται διάφορα παραδείγματα και εφαρμογές. Ιδιαίτερο βάρος θα δοθεί στην μελέτη των Μαρκοβιανών διαδικασιών διακριτού και συνεχούς χρόνου. Εκτός από την λεπτομερή μελέτη των βασικών θεωρητικών αποτελεσμάτων, θα δοθεί έμφαση και στην μαθηματική μοντελοποίηση προβλημάτων τα οποία μπορούν να μελετηθούν με την βοήθεια των Μαρκοβιανών αλυσίδων. Εφόσον το επιτρέψει ο χρόνος, θα επιχειρηθεί μια εισαγωγή στις ανανεωτικές διαδικασίες και στις εφαρμογές αυτών σε προβλήματα της θεωρία αξιοπιστίας. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής/τρια θα είναι σε θέση να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Γενικά περί στοχαστικών διαδικασιών. Τυχαίοι περίπατοι, το πρόβλημα της καταστροφής του παίκτη. Μαρκοβιανές αλυσίδες σε διακριτό χρόνο. Μοντελοποίηση προβλημάτων, Χρονικά εξαρτημένη συμπεριφορά: μεταβατική κατανομή, χρόνοι καταλήψεων, Ανάλυση 1ου βήματος, χρόνοι 1ης εισόδου και 1ης επανόδου, Ταξινόμηση καταστάσεων, επισκέψεις σε συγκεκριμένη κατάσταση, Αδιαχώρισιμότητα και διαχωρισιμότητα, επαναληπτικότητα, περιοδικότητα καταστάσεων. Υπολογισμός στάσιμης κατανομής, Οριακή συμπεριφορά: βασικά οριακά θεωρήματα και οριακή κατανομή, Χρονικά αντιστρέψιμες αλυσίδες (timereversibility). Μαρκοβιανές αλυσίδες με κόστη και αμοιβές. Χρήση MATLAB, R στον υπολογισμό βασικών χαρακτηριστικών. Μαρκοβιανές αλυσίδες σε συνεχή χρόνο. Απειροστός γεννήτορας, εξισώσεις Chapman-Kolmogorov, οριακή συμπεριφορά καταστάσεων. Διαδικασία Poisson, διαδικασία γεννήσεων-θανάτoυ. Εφαρμογές στην θεωρία συστημάτων εξυπηρέτησης και στην θεωρία αξιοπιστίας.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη (πρόσωπο με πρόσωπο) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
Γλώσσα Αξιολόγησης: Ελληνική Γλώσσα Αξιολόγησης για Φοιτητές Erasmus: Αγγλικά Μέθοδοι Αξιολόγησης: Γραπτή τελική εξέταση (100%) που περιλαμβάνει Θεωρία και Επίλυση ασκήσεων. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- R. Dobrow. Introduction to Stochastic Processes with R, Wiley, 2016.
- R. Durret. Essentials of Stochastic Processes, Springer, 3rd edition, 2016.
- V.G. Kulkarni. Modeling and Analysis of Stochastic Systems, 3rd edition, CRC Press, London 2017.
- N. Privault. Understanding Markov Chains [electronic resource] HEAL-Link Springer ebooks, 2013 (Κωδικός Εύδοξου: 73260010).
- M. Pinksy, S. Karlin. An introduction to stochastic modelling, 4th edition, Academic Press, 2011.
- S. Ross. Introduction to probability models, Academic Press, New York, 2014.
- [Περιοδικό / Journal] Stochastic Processes and their Applications (Elsevier)
- [Περιοδικό / Journal] Stochastics (Taylor - Francis)
- [Περιοδικό / Journal] Journal of Applied Probability (Cambridge University Press)