Απειροστικός Λογισμός II (MAY211): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(→Γενικά) |
(→Γενικά) |
||
Γραμμή 27: | Γραμμή 27: | ||
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) | | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) | ||
|- | |- | ||
! Τύπος Μαθήματος | ! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]] | ||
| Επιστημονικής Περιοχής | | Επιστημονικής Περιοχής | ||
|- | |- |
Αναθεώρηση της 05:01, 12 Μαΐου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY211 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙI |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Επιστημονικής Περιοχής |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα αυτό, που αποτελεί συνέχεια του μαθήματος «Απειροστικός Λογισμός Ι» σκοπεύει στη γνωριμία του φοιτητή με περαιτέρω έννοιες της Μαθηματικής Ανάλυσης σε θεωρητικό και πρακτικό επίπεδο και τη ανάπτυξη υπολογιστικής ικανότητας. Μέσα από το μάθημα αυτό ο/η φοιτητής/τρια:
|
---|---|
Γενικές Ικανότητες | Το μάθημα προάγει την επαγωγική, αναλυτική και δημιουργική σκέψη, την αυτενέργεια του φοιτητή και αναπτύσσει την υπολογιστική ικανότητά του. Αποσκοπεί στο να αποκτήσει ο πρωτοετής φοιτητής το υπόβαθρο και την πρακτική σκέψη για να χειρίζεται έννοιες της Μαθηματικής Ανάλυσης. |
Περιεχόμενο Μαθήματος
- Σειρές, σύγκλιση σειρών και κριτήρια σύγκλισης. Κριτήριo Dirichlet, κριτήριο λόγου, κριτήριο ρίζας, κριτήριο ολοκληρώματος. Εναλλάσουσες σειρές και θεώρημα Leibnitz. Απόλυτη σύγκλιση σειράς, αναδιατάξεις σειρών. Δυναμοσειρές, ακτίνα σύγκλισης δυναμοσειρών.
- Ομοιόμορφη συνέχεια συναρτήσεων, ορισμός και ιδιότητες. Χαρακτηρισμός ομοιόμορφης συνέχειας με ακολουθίες. Ομοιόμορφη συνέχεια συνεχών συναρτήσεων ορισμένων σε κλειστό διάστημα.
- Ολοκλήρωμα Riemann, ορισμός για φραγμένες συναρτήσεις σε κλειστό διάστημα. Κριτήριο Riemann, ολοκληρωσιμότητα των συνεχών συναρτήσεων. Αόριστο ολοκλήρωμα και θεμελιώδες θεώρημα του Απειροστικού Λογισμού. Θεώρημα μέσης τιμής του ολοκληρωτικού λογισμού. Παραγοντική ολοκλήρωση και ολοκλήρωση με αντικατάσταση. Ολοκληρώματα βασικών συναρτήσεων, ολοκλήρωση ρητών συναρτήσεων. Εφαρμογές του ολοκληρώματος. Γενικευμένα ολοκληρώματα και κριτήρια σύγκλισης αυτών. Σχέση γενικευμένων ολοκληρωμάτων και σειρών.
- Πολυώνυμα Taylor, θεώρημα Taylor, μορφές του υπολοίπου Taylor. Σειρές Taylor και αναπτύγματα σε σειρά Taylor βασικών συναρτήσεων.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Η διδασκαλία γίνεται αποκλειστικά με διαλέξεις στον πίνακα από το διδάσκοντα. Η θεωρητική φύση του μαθήματος δεν επιτρέπει κάτι διαφορετικό. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Επικοινωνία των φοιτητών με τους διδάσκοντες μέσω ηλεκτρονικού ταχυδρομείου. | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτική). Παράδοση ασκήσεων στη διάρκεια του εξαμήνου (προαιρετική). |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Thomas, Απειροστικός Λογισμός, R.L. Finney, M.D. Weir, F.R.Giordano, Πανεπιστημιακές Εκδόσεις Κρήτης, (Απόδοση στα ελληνικά: Μ. Αντωνογιαννάκης).