Διδακτική των Μαθηματικών (ΜΑE503): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Γραμμή 27: Γραμμή 27:
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
|-
|-
! Τύπος Μαθήματος
! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]]
| Ανάπτυξης Δεξιοτήτων
| Ειδίκευσης
|-
|-
! Προαπαιτούμενα Μαθήματα
! Προαπαιτούμενα Μαθήματα

Αναθεώρηση της 05:07, 12 Μαΐου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE503 (επίσης 602)
Εξάμηνο 5 (επίσης 6)
Τίτλος Μαθήματος ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Τα επιδιωκόμενα μαθησιακά αποτελέσματα του Μαθήματος για τον φοιτητή είναι αφενός η απόκτηση θεωρητικού υποβάθρου σε θέματα διδακτικής των Μαθηματικών, και, αφετέρου, η ανάπτυξη κατάλληλων δεξιοτήτων ώστε να οργανώνει, να υλοποιεί και να αξιολογεί μαθήματα Μαθηματικών σε επίπεδο δευτεροβάθμιας εκπαίδευσης. Μετά την επιτυχή ολοκλήρωση του Μαθήματος οι φοιτητές αναμένεται να:
  • Γνωρίζουν το εύρος και την κατανομή της διδακτέας ύλης στην Μέση Εκπαίδευση.
  • Σχεδιάζουν και να υλοποιούν μαθήματα επιπέδου δευτεροβάθμιας εκπ/σης
  • Οργανώνουν αξιολογήσεις και δραστηριότητες (γραπτές, προφορικές, πολλαπλών επιλογών, ομαδικές, κ.λ.π.)
  • Χρησιμοποιούν πηγές εκτός των σχολικών εγχειριδίων
  • Αντιλαμβάνονται τα ιδιαίτερα χαρακτηριστικά κάθε τάξης και να τα λαμβάνουν υπόψη στην οργάνωση της διδασκαλίας
  • Αποκτήσουν εμπειρία διδασκαλίας
  • Διαχειρίζονται προβλήματα στην τάξη που προκύπτουν από ιδιαιτερότητες μαθητών.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Ομαδική εργασία
  • Σχεδιασμός και διαχείριση έργων
  • Σεβασμός στη διαφορετικότητα και στην πολυπολιτισμικότητα
  • Επίδειξη κοινωνικής, επαγγελματικής και ηθικής υπευθυνότητας και ευαισθησίας σε θέματα φύλου
  • Άσκηση κριτικής και αυτοκριτικής
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

Περιεχόμενο Μαθήματος

Η Εκπαίδευση και οι σκοποί της. Στοιχεία από την ιστορία των Μαθηματικών και την εξέλιξη της Μαθηματικής Εκπαίδευσης. Γενικοί σκοποί της διδασκαλίας των Μαθηματικών. Φιλοσοφία και Μάθηση των Μαθηματικών. Μοντέλα και διδασκαλία Μαθηματικών, μέθοδοι και διδακτικές μέθοδοι. Διδακτική μαθηματικών εννοιών και ενοτήτων: Ανάλυση, Άλγεβρα, Γεωμετρία. Το μάθημα των Μαθηματικών: προγραμματισμός, σχεδιασμός, προετοιμασία, παρουσίαση, αξιολόγηση. Αξιολόγηση της διδασκαλίας: συμπεράσματα και προοπτικές. Η οργάνωση της Μαθηματικής Εκπαίδευσης στην Β/θμια εκπαίδευση. Αναλυτικά Προγράμματα, περιοδικά, διαγωνισμοί.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Σελίδα του Μαθήματος στην πλατφόρμα “E-course” του Πανεπιστημίου Ιωαννίνων
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Μελέτη & ανάλυση βιβλιογραφίας 36
Παρουσιάσεις 25
Ατομικές Εργασίες 25
Ομαδικές Εργασίες 25
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γλώσσα Αξιολόγησης: Ελληνική. Αξιολόγηση με:
  • Μικροδιδασκαλίες
  • Παρουσιάσεις
  • Γραπτές Εργασίες
  • Εξετάσεις Εξαμήνου

Τα κριτήρια αξιολόγησης θα αναρτηθούν στην ιστοσελίδα του Μαθήματος στο E-course.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • ΜΠΑΜΠΗΣ ΤΟΥΜΑΣΗΣ, Σύγχρονη Διδακτική των Μαθηματικών, Gutenberg, Αθήνα1999
  • ΑΘΑΝΑΣΙΟΣ ΓΑΓΑΤΣΗΣ, Θέματα Διδακτικής των Μαθηματικών, Εκδόσεις Κυριακίδη, Θεσσαλονίκη 1993
  • MORRIS KLEIN, Γιατί δεν μπορεί να κάνει πρόσθεση ο Γιάννης, Εκδόσεις Βάνιας, Θεσσαλονίκη 1993
  • G. POLYA, How to solve it?, Princeton University Press, 1999
  • PIERRE VAN HIELE, Structure and Insight: A Theory of Mathematics Education, Academic Press, 1986
  • SUE JOHNSTON-WILDER, PETER JOHNSTON-WILDER, DAVID PIMM, CLARE LEE, Learning to Teach Mathematics in the Secondary School, 3 rd Edition, Routledge, 2011