Κυρτή Ανάλυση (ΜΑE753): Διαφορά μεταξύ των αναθεωρήσεων
(→Γενικά) |
|||
Γραμμή 48: | Γραμμή 48: | ||
|- | |- | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| | | | ||
Με βάση την Ταξινόμηση κατά Bloom. | |||
Γνώση: | |||
* Η έννοια της κυρτής ανάλυσης. | |||
* Η έννοια κυρτού συνόλου. | |||
* Η έννοια του δυϊσμού. | |||
Κατανόηση: | |||
* Μελέτη αναλυτικών ιδιοτήτων κυρτών συναρτήσεων. | |||
* Μελέτη τοπολογικών, γεωμετρικών και ποιοτικών ιδιοτήτων κυρτών συνόλων. | |||
* Μελέτη μετασχηματισμού Legendre και πολικό κώνου και συνόλου. | |||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες | ||
| | | | ||
* Προαγωγή της δημιουργικής, αναλυτικής και επαγωγικής σκέψης. | |||
* Είναι προαπαιτούμενο για την παραγωγή νέων ερευνητικών ιδεών. | |||
* Προαγωγή | * Αυτόνομη εργασία. | ||
* Ομαδική εργασία. | |||
* | * Λήψη αποφάσεων. | ||
* | |||
|} | |} | ||
Αναθεώρηση της 00:25, 8 Ιουνίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE817 |
Εξάμηνο | 8 |
Τίτλος Μαθήματος | ΚΥΡΤΗ ΑΝΑΛΥΣΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Με βάση την Ταξινόμηση κατά Bloom. Γνώση:
Κατανόηση:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Εισαγωγικές έννοιες. Κυρτές συναρτήσεις και κυρτά σύνολα. Πολύτοπα. Συναρτήσεις στάθμης και συναρτήσεις στήριξης. Δυικότητα. Θεώρημα του Καραθεοδωρή. Θεωρήματα Radon και Helly. Το πρώτο Θεώρημα Minkowski. Η ανισότητα Brunn-Minkowski. Μικτοί όγκοι. Ισοπεριμετρικού τύπου ανισότητες (όπως κλασσική ισοπεριμετρική και Blaschke-Santalo). Το Θεώρημα του F. John. Η αντίστροφη ισοπεριμετρική ανισότητα.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Διαλέξεις - παρουσιάσεις στην αίθουσα | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση της πλατφόρμας “E-course” του Πανεπιστημίου Ιωαννίνων | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Οι φοιτητές επιλέγουν να αξιολογηθούν με τον εξής τρόπο:
Τα κριτήρια αξιολόγησης θα είναι προσβάσιμα στην ιστοσελίδα του Μαθήματος στην πλατφόρμα “E-Course” του Πανεπιστημίου Ιωαννίνων. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος: