Θέματα Συναρτήσεων Μίας Μεταβλητής (MAE515): Διαφορά μεταξύ των αναθεωρήσεων
μ (Ο Mathwikiadmin μετακίνησε τη σελίδα Ειδικά θέματα Απειροστικού Λογισμού (MAE752) στην Ειδικά Θέματα Απειροστικού Λογισμού (MAE752) χωρίς να αφήσει ανακατεύθυνση) |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[Topics in | * [[Special Topics in Infinitesimal Calculus (MAE752)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | {{Menu-OnAllPages-GR}} | ||
Γραμμή 23: | Γραμμή 23: | ||
|- | |- | ||
! Τίτλος Μαθήματος | ! Τίτλος Μαθήματος | ||
| | | Ειδικά Θέματα Απειροστικού Λογισμού | ||
|- | |- | ||
! Αυτοτελείς Διδακτικές Δραστηριότητες | ! Αυτοτελείς Διδακτικές Δραστηριότητες |
Αναθεώρηση της 17:46, 17 Αυγούστου 2024
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE752 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | Ειδικά Θέματα Απειροστικού Λογισμού |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Οι στόχοι του μαθήματος είναι η απόκτηση ειδικών γνώσεων στην θεωρία πραγματικών συναρτήσεων. |
---|---|
Γενικές Ικανότητες |
Το μάθημα αποσκοπεί στην απόκτηση της ικανότητας από τον προπτυχιακό φοιτητή στην ανάλυση και σύνθεση βασικών γνώσεων της θεωρίας των πραγματικών συναρτήσεων. |
Περιεχόμενο Μαθήματος
Μονότονες συναρτήσεις-συνέχεια, συναρτήσεις φραγμένης κύμανσης,Fσ και Gδ σύνολα, σύνολα μηδενικού μέτρου, θεώρημα Lebesgue( κάθε μονότονη συνάρτηση διαφορίζεται σχεδόν παντού), Darboux συνεχείς συναρτήσεις-ορισμοί, ιδιότητες, ισοδύναμοι χαρακτηρισμοί, κριτήρια, Ημισυνεχείς συναρτήσεις. Διαφορισιμότητα αόριστου ολοκληρώματος Riemann ολοκληρώσιμης συνάρτησης, κλάσεις του Baire, Borel μετρήσιμες συναρτήσεις, αναλυτικά σύνολα-ορισμοί, ισοδύναμοι χαρακτηρισμοί, σύνδεση με Borel σύνολα-σχετική θεωρία, ολοκλήρωμα Lebesgue, ολοκλήρωμα Stieltjes.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Διαλέξεις-παρουσιάσεις στην αίθουσα. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- A.C.M. Van Rooij, W.H. Schikhof, Α second course on real functions, Cambridge University Press.