Στατιστική Συμπερασματολογία (ΜΑΕ633)

Από Wiki Τμήματος Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE633
Εξάμηνο 6
Τίτλος Μαθήματος ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στόχος του µαθήµατος είναι η παρουσίαση και µελέτη τεχνικών και µεθόδων παραµετρικής στατιστικής συµπερασµατολογίας και ειδικότερα η εκτίµηση παραµέτρων σε σηµείο, σε διάστηµα και η ανάπτυξη της θεωρίας του ελέγχου στατιστικών υποθέσεων. Στόχος του μαθήματος αυτού, είναι ο φοιτητής να εντρυφήσει στις παραπάνω θεμελιώδεις έννοιες και μεθόδους της στατιστικής και να είναι σε θέση να εξάγει στατιστικά συμπεράσματα στη βάση πειραματικών δεδομένων, αξιοποιώντας τις μεθόδους αυτές. Με την ολοκλήρωση του μαθήματος οι φοιτητές θα έχουν αποκτήσει το θεωρητικό υπόβαθρο στο οποίο οικοδομούνται όλες οι μεθοδολογίες και τεχνικές της στατιστικής.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Λήψη αποφάσεων
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών.

Περιεχόμενο Μαθήματος

Eκτιµητική: Aµερόληπτοι, επαρκείς και συνεπείς εκτιµητές. Aµερόληπτοι εκτιµητές ελάχιστης διασποράς. Aνισότητα Cramer - Rao. Θεωρία Lehmann - Scheffe. Εκτιµητές µέγιστης πιθανοφάνειας και ιδιότητες αυτών. Mέθοδοι εκτιµήσεως (µεγίστης πιθανοφάνειας και µέθοδος των ροπών). Eκτίµηση παραµέτρων σε διάστηµα. ∆ιαστήµατα και περιοχές εµπιστοσύνης. Έλεγχοι υποθέσεων: Λήµµα Neyman - Pearson. 'Eλεγχος απλών υποθέσεων, έλεγχος συνθέτων υποθέσεων. Iσχυρότατα τεστ. Tέστ πηλίκου πιθανοφανειών.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη (πρόσωπο με πρόσωπο)
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • Casella, G. and Berger, R. (2002). Statistical Inference. 2 Edition. Duxbury Advanced Series.
  • Hogg, R. V., McKean, J. W. and Craig, A. T. (2005). Introduction to Mathematical Statistics. Pearson Education, Inc.
  • Mood, A., Graybill, F. and Boes, D. (1974). Introduction to the Theory of Statistics. McGrawHill.
  • Roussas, G. (2003). An Introduction to Probability and Statistical Inference. Academic Press.
  • Κουρούκλης, Σ. (2007). Στατιστική Ι. Πανεπιστήμιο Πατρών.