Γενικά
Σχολή
|
Σχολή Θετικών Επιστημών
|
Τμήμα
|
Τμήμα Μαθηματικών
|
Επίπεδο Σπουδών
|
Προπτυχιακό
|
Κωδικός Μαθήματος
|
MAE634
|
Εξάμηνο
|
6
|
Τίτλος Μαθήματος
|
ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΕΞΥΠΗΡΕΤΗΣΗΣ
|
Αυτοτελείς Διδακτικές Δραστηριότητες
|
Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
|
Τύπος Μαθήματος
|
Ειδίκευσης
|
Προαπαιτούμενα Μαθήματα
|
|
Γλώσσα Διδασκαλίας και Εξετάσεων
|
Ελληνική
|
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
|
Ναι (στην Αγγλική γλώσσα)
|
Ηλεκτρονική Σελίδα Μαθήματος (URL)
|
Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα
|
Ο στόχος του μαθήματος είναι η μελέτη και η ανάπτυξη μοντέλων για την ανάλυση της συμπεριφοράς και της απόδοσης συστημάτων εξυπηρέτησης και η χρήση/εφαρμογή τους στη λήψη αποφάσεων. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής /τρια θα είναι σε θέση να:
- αναγνωρίζει και εφαρμόζει Μ/M/1 μοντέλα ουράς και παραλλαγές αυτών
- εφαρμόζει το αποτέλεσμα του Little
- αναγνωρίζει και εφαρμόζει M/G/1 μοντέλα ουράς
- εφαρμόζει Μαρκοβιανές διαδικασίες στη μοντελοποίηση συστημάτων εξυπηρέτησης
- εφαρμόζει τα παραπάνω μοντέλα για τη λήψη βέλτιστων αποφάσεων.
|
Γενικές Ικανότητες
|
- Αυτόνομη εργασία
- Λήψη αποφάσεων
- Προσαρμογή σε νέες καταστάσεις
- Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
- Σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.
|
Περιεχόμενο Μαθήματος
Το Σύστημα Μ/Μ/1: Ανάλυση καταστάσεων, Χρόνος αναμονής, Χρόνος συνεχούς απασχόλησης, Διαδικασία αναχωρήσεων. Άλλα Μαρκοβιανά Συστήματα: Το Μ/Μ/m/k σύστημα, Το Μ/Μ/∞/∞ σύστημα, Συστήματα Erlang. Συστήματα με ομαδικές αφίξεις ή αναχωρήσεις. Το M/G/1 Σύστημα: Καταστάσεις συστήματος, Χρόνος αναμονής, Χρόνος συνεχούς απασχόλησης. Εφαρμογές για την βέλτιστη λήψη αποφάσεων.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης
|
Πρόσωπο με πρόσωπο
|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
|
- Χρήση ελεύθερου λογισμικού για το υπολογισμό μέτρων απόδοσης συστημάτων εξυπηρέτησης.
- Οι φοιτητές επικοινωνούν μαζί μου με email.
|
Οργάνωση Διδασκαλίας
|
Δραστηριότητα
|
Φόρτος Εργασίας Εξαμήνου
|
Διαλέξεις (13Χ3)
|
39
|
Αυτοτελής Μελέτη
|
78
Ασκήσεις Πεδίου (δίνονται 3-4 σύνολα ασκήσεων)
|
33
|
Σύνολο Μαθήματος
|
150
|
|
Αξιολόγηση Φοιτητών
|
100%)
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Handouts and slides. Selected topics from the resources given below:
- Adan, I., Resing, J.. Queueing Theory. Eindhoven. Notes available online https://www.win.tue.nl/jadan/queueing.pdf , 2001.
- Adan, I., van Leeuwaarden, J., Selen, J., Analysis of structured Markov processes, 2017 (Online https://arxiv.org/pdf/1709.09060.pdf).
- Kleinrock, L. Queueing Systems, Vol. I: Theory. Wiley, New York, 1975.
- V.G. Kulkarni. Introduction to Modeling and Analysis of Stochastic Systems Second Edition, Springer, 2011.
- J. Medhi. Stochastic Models in Queueing Theory, Academic Press, New York, 2003.
- P. Phuoc Tran-Gia, T. Hosfeld. Performance Modeling and Analysis of Communication Networks, 2017. (Available online in https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/24192/file/978-3-95826-153-2_Tran-Gia_Hossfeld_OPUS_24192.pdf)
- Ross, S.. Introduction to Probability Models, Academic Press, New York, 12th Ed. 2019.