Εισαγωγή στις Πιθανότητες (ΜΑY331)
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY331 |
Εξάμηνο | 3 |
Τίτλος Μαθήματος | ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Επιστημονικής Περιοχής |
Προαπαιτούμενα Μαθήματα |
Βασικές έννοιες και τεχνικές Απειροστικού Λογισμού μία μεταβλητής. Υπολογισμοί ολοκληρωμάτων και αθροισμάτων θα πρέπει να είναι οικεία στους φοιτητές. |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στόχοι του µαθήµατος είναι η κατανόηση των βασικών ορισµών της πιθανότητας και των θεµελιωδών αρχών και νόµων της θεωρίας πιθανοτήτων. Περεταίρω, η εισαγωγή στις έννοιες της τυχαίας µεταβλητής και της αντίστοιχης κατανοµής, καθώς επίσης και των χαρακτηριστικών τους, όπως η µέση τιµή, η διακύµανση, ροπές, ροπογεννήτρια, κ.λ.π. Ειδικές κατανοµές (π.χ. διωνυµική, Poisson, ομοιόμορφη, εκθετική, κανονική κατανομή κ.λ.π.) παρουσιάζονται και µελετώνται. Ιδιαίτερο ενδιαφέρον δίδεται στην αξιοποίηση των πιθανοθεωρητικών αυτών µοντέλων στις εφαρµογές.
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
∆ειγµατικός χώρος - Ενδεχόµενα, πράξεις επί των ενδεχοµένων - Κλασικός ορισµός πιθανότητας - Πράξεις επί των πιθανοτήτων - Στοιχεία συνδυαστικής ανάλυσης - Έννοια τυχαίας µεταβλητής - Αθροιστική συνάρτηση κατανοµής - Τύποι τυχαίας µεταβλητής - Γνωστές διακριτές τυχαίες µεταβλητές - Γνωστές συνεχείς τυχαίες µεταβλητές - Αναµενόµενη τιµή τυχαίας µεταβλητής - ∆ιακύµανση τυχαίας µεταβλητής - Ροπές - Ροπογεννήτρια συνάρτηση - Αλλαγή µεταβλητών.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη (πρόσωπο με πρόσωπο) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Ι. Κοντογιάννης, Σ. Τουμπής. Στοιχεία πιθανοτήτων, [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. https://hdl.handle.net/11419/2810.
- J. Blitzstein, J. Hwang. Introduction to Probability, 2nd edition, CRC Press, 2019.
- R. Dobrow. Probability with Applications and R, Wiley, 2014.
- H. Tijms. Understanding Probability, 3rd edition, Cambridge University Press, 2012.
- H. Tijms. ProbabilityQ a lively introduction, Cambridge University Press, 2018.
- [Περιοδικό / Journal] Annals of Probability (IMS)
- [Περιοδικό / Journal] Electronic Journal of Probability (IMS)
- [Περιοδικό / Journal] Journal of Applied Probability (Cambridge University Press)