Αρμονική Ανάλυση (MAE718): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
 
(6 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Περιγράμματα Προπτυχιακών Μαθημάτων]] - [https://math.uoi.gr Τμήμα Μαθηματικών]
* [[Harmonic Analysis (MAE718)|English version]]
{{Course-UnderGraduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===
Γραμμή 26: Γραμμή 28:
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
|-
|-
! Τύπος Μαθήματος
! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]]
| Ειδικού Υποβάθρου
| Ειδίκευσης
|-
|-
! Προαπαιτούμενα Μαθήματα
! Προαπαιτούμενα Μαθήματα
Γραμμή 62: Γραμμή 64:
|-
|-
! Τρόπος Παράδοσης
! Τρόπος Παράδοσης
| Πρόσωπο με πρόσωπο
|
Διδασκαλία με διαλέξεις στον πίνακα.
|-
|-
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών

Τελευταία αναθεώρηση της 10:06, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE718
Εξάμηνο 7
Τίτλος Μαθήματος ΑΡΜΟΝΙΚΗ ΑΝΑΛΥΣΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Οι στόχος του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή στις θεωρία των σειρών Fourier.
Γενικές Ικανότητες Το μάθημα αποσκοπεί στην απόκτηση της ικανότητας από τον μεταπτυχιακό φοιτητή στην ανάλυση και σύνθεση βασικών γνώσεων της Αρμονικής Ανάλυσης.

Περιεχόμενο Μαθήματος

Τριγωνομετρικά πολυώνυμα, μερικά αθροίσματα σειράς Fourier μίας συνάρτησης, ανισότητα Bessel, Λήμμα Riemann-Lebesgue, ταυτότητα του Parseval για Riemann ολοκληρώσιμες συναρτήσεις, μιγαδικές Riemann ολοκληρώσιμες συναρτήσεις ορισμένες σε διάστημα, συντελεστές και σειρά Fourier, πυρήνας του Dirichlet, κριτήρια για ομοιόμορφη σύγκλιση της σειράς Fourier, συνέλιξη συναρτήσεων και πυρήνες προσέγγισης της μονάδος, ο πυρήνας του Fejer, θεώρημα Fejer, πυρήνας του Poisson, Abel αθροισιμότητα σειράς Fourier, εφαρμογές.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης

Διδασκαλία με διαλέξεις στον πίνακα.

Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή εξέταση στο τέλος του εξαμήνου.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • Yitzhak Katznelson, An Introduction to Harmonic Analysis, Dover Edition.
  • Elias M. Stein, Rami Shakarchi, Fourier Analysis, An Introduction, Princeton University Press.