Εισαγωγή στην Αριθμητική Ανάλυση (ΜΑΥ341): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(→Γενικά) |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[Introduction to Numerical Analysis (MAY341)|English version]] | * [[Introduction to Numerical Analysis (MAY341)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 09:59, 15 Ιουνίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY341 |
Εξάμηνο | 3 |
Τίτλος Μαθήματος | ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 4, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Επιστημονικής Περιοχής |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Θεωρία σφαλμάτων.
- Αριθμητική επίλυση μη γραμμικών εξισώσεων: γενικές επαναληπτικές μέθοδοι, η μέθοδος του Νεύτωνα, η μέθοδος της Τέμνουσας.
- Αριθμητική επίλυση γραμμικών συστημάτων: νόρμες πινάκων και δείκτης κατάστασης πίνακα, άμεσες μέθοδοι (απαλοιφή του Gauss και παραλλαγές της, LU παραγοντοποίηση), και επαναληπτικές μέθοδοι (Jacobi, Gauss-Seidel)).
- Προσέγγιση συναρτήσεων με πολυωνυμική παρεμβολή: παρεμβολή τύπου Lagrange και τύπου Hermite, σφάλματα προσέγγισης.
- Αριθμητική ολοκλήρωση: απλοί και σύνθετοι τύποι αριθμητικής ολοκλήρωσης, κανόνας του τραπεζίου, κανόνας του Simpson, σφάλματα κατά την αριθμητική ολοκλήρωση.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα). (100% του τελικού βαθμού, κάλυψη μαθησιακών αποτελεσμάτων 1-4) |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- “An Introduction to Numerical Analysis”, E. Süli, and D. Mayers, Cambridge University Press, Cambridge, 2003.