Υπολογιστική Στατιστική (ΜΑΕ836): Διαφορά μεταξύ των αναθεωρήσεων
(→Γενικά) |
Χωρίς σύνοψη επεξεργασίας |
||
| Γραμμή 1: | Γραμμή 1: | ||
* [[Computational Statistics (MAE836)|English version]] | * [[Computational Statistics (MAE836)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | {{Course-UnderGraduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Τελευταία αναθεώρηση της 10:33, 15 Ιουνίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Προπτυχιακό |
| Κωδικός Μαθήματος | MAE836 |
| Εξάμηνο | 8 |
| Τίτλος Μαθήματος | ΥΠΟΛΟΓΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
| Τύπος Μαθήματος | Ειδίκευσης |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Οι φοιτητές μετά την επιτυχή παρακολούθηση αυτού του μαθήματος θα πρέπει να είναι σε θέση να:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Παραγωγή τυχαίων αριθμών από διακριτές και συνεχείς κατανομές. Ολοκλήρωση Monte Carlo. Οπτικοποίηση κλασικών αποτελεσμάτων της στατιστικής συμπερασματολογίας μέσω προσομοιωμένων δειγμάτων (πχ. ασυμπτωτική κανονικότητα δειγματικού μέσου, (1-α)| 100% ΔΕ, εκτίμηση ισχύος και p-value ενός στατιστικού τεστ). Μέθοδοι επαναδειγματοληψίας (Jackknife και Bootstrap). Εκτίμηση πυκνότητας πιθανότητας και εφαρμογές (Kernel density estimation). Τεχνικές αριθμητικής βελτιστοποίησης (όπως Newton-Raphson, Fisher scoring, αλγόριθμος expectation-maximization [EM]). Το μάθημα είναι εργαστηριακό. Η γλώσσα προγραμματισμού που θα χρησιμοποιηθεί είναι η R.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Στην Τάξη | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Davison, A. C., Hinkley, D. V., Bootstrap methods and their application. Cambridge University Press 1997.
- Rizzo, M. L., Statistical computing with R. Chapman & Hall/CRC 2007.
- Robert, C. P., Casella, G., Introducing Monte Carlo methods with R. Springer Verlag 2009