Πραγματική Ανάλυση (MAE617)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 10:02, 15 Ιουνίου 2023 από τον Mathwikiadmin (συζήτηση | συνεισφορές)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE617
Εξάμηνο 6
Τίτλος Μαθήματος ΠΡΑΓΜΑΤΙΚΗ ΑΝΑΛΥΣΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις, παρουσιάσεις και Ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Το μάθημα στοχεύει στην παρουσίαση θεμάτων που αφορούν πραγματικές συναρτήσεις ορισμένες σε μετρικό χώρο. Μελετούνται η κατά σημείο και ομοιόμορφη σύγλιση ακολουθιών συναρτήσεων, σχετικά θεωρήματα όπως το Ascoli - Arzela, το θεώρημα Stone - Wierstrass, και δίνονται εφαρμογές.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Ομαδική εργασία
  • Εργασία σε διεθνὲς περιβάλλον
  • Εργασία σε διεπιστημονικὸ περιβάλλον
  • Παραγωγὴ νέων ερευνητικών ιδεών.

Περιεχόμενο Μαθήματος

Συναρτησιακοί χώροι σε μετρικό χώρο (Χ,d), κατά σημείο και ομοιόμορφη σύγκλιση ακολουθιών συναρτήσεων, ο χώρος Β(Χ) των φραγμένων πραγματικών συναρτήσεων στον Χ, ο χώρος C(X) των συνεχών συναρτήσεων στον Χ - ισοσυνεχή υποσύνολα του, θεώρημα Ascoli-Arzela και εφαρμογές, θεώρημα Dini, θεώρημα Stone - Wierstrass και εφαρμογές, διαχωρίσιμοι μετρικοί χώροι, θεώρημα Lindelof σε Ευκλείδειους χώρους, σύνολο και συνάρτηση Cantor - εφαρμογές.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή εξέταση στο τέλος του εξαμήνου.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • Charalambos D. Aliprantis, Owen Burkinshaw, Principles of Real Analysis, Academic Press.
  • Michael O Searcoid, Metric Spaces, Springer Undergraduate Mathematics Series.