Πραγματική Ανάλυση (MAE617)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 02:04, 8 Ιουνίου 2023 από τον Mathwikiadmin (συζήτηση | συνεισφορές)
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Προπτυχιακό |
| Κωδικός Μαθήματος | MAE617 |
| Εξάμηνο | 6 |
| Τίτλος Μαθήματος | ΠΡΑΓΜΑΤΙΚΗ ΑΝΑΛΥΣΗ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις, παρουσιάσεις και Ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
| Τύπος Μαθήματος | Ειδίκευσης |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Το μάθημα στοχεύει στην παρουσίαση θεμάτων που αφορούν πραγματικές συναρτήσεις ορισμένες σε μετρικό χώρο. Μελετούνται η κατά σημείο και ομοιόμορφη σύγλιση ακολουθιών συναρτήσεων, σχετικά θεωρήματα όπως το Ascoli - Arzela, το θεώρημα Stone - Wierstrass, και δίνονται εφαρμογές. |
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Συναρτησιακοί χώροι σε μετρικό χώρο (Χ,d), κατά σημείο και ομοιόμορφη σύγκλιση ακολουθιών συναρτήσεων, ο χώρος Β(Χ) των φραγμένων πραγματικών συναρτήσεων στον Χ, ο χώρος C(X) των συνεχών συναρτήσεων στον Χ - ισοσυνεχή υποσύνολα του, θεώρημα Ascoli-Arzela και εφαρμογές, θεώρημα Dini, θεώρημα Stone - Wierstrass και εφαρμογές, διαχωρίσιμοι μετρικοί χώροι, θεώρημα Lindelof σε Ευκλείδειους χώρους, σύνολο και συνάρτηση Cantor - εφαρμογές.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Charalambos D. Aliprantis, Owen Burkinshaw, Principles of Real Analysis, Academic Press.
- Michael O Searcoid, Metric Spaces, Springer Undergraduate Mathematics Series.