Γενικά
Σχολή
|
Σχολή Θετικών Επιστημών
|
Τμήμα
|
Τμήμα Μαθηματικών
|
Επίπεδο Σπουδών
|
Προπτυχιακό
|
Κωδικός Μαθήματος
|
MAY514
|
Εξάμηνο
|
5
|
Τίτλος Μαθήματος
|
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
|
Αυτοτελείς Διδακτικές Δραστηριότητες
|
Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5)
|
Τύπος Μαθήματος
|
Επιστημονικής Περιοχής
|
Προαπαιτούμενα Μαθήματα
|
|
Γλώσσα Διδασκαλίας και Εξετάσεων
|
Ελληνική
|
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
|
Ναι (στην Αγγλική γλώσσα)
|
Ηλεκτρονική Σελίδα Μαθήματος (URL)
|
Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα
|
Το Μάθημα αποτελεί το βασικό εισαγωγικό μάθημα στις συνήθεις διαφορικές εξισώσεις. Αποσκοπεί σε μια γενική εισαγωγική περιγραφή του χώρου των συνήθων διαφορικών εξισώσεων και στην απόκτηση βασικών γνώσεων σχετικά με:
- την επίλυση γραμμικών διαφορικών εξισώσεων πρώτης τάξης και εξισώσεων ορισμένων ειδικών μορφών
- προβλήματα ύπαρξης και μονοσήμαντου συνήθων διαφορικών εξισώσεων πρώτης τάξης
- την θεωρία των γραμμικών εξισώσεων ανώτερης τάξης
- την επίλυση γραμμικών εξισώσεων, καθώς και συστημάτων με σταθερούς συντελεστές
- την επίλυση γραμμικών εξισώσεων δεύτερης τάξης με την μέθοδο των δυναμοσειρών
- την επίλυση διαφορικών εξισώσεων με μετασχηματισμούς Laplace
- την επίλυση γραμμικών μερικών διαφορικών εξισώσεων πρώτης τάξης.
|
Γενικές Ικανότητες
|
- Αυτόνομη εργασία
- Προαγωγή ελεύθερης και επαγωγικής σκέψης
- Προαγωγή αναλυτικής και συνθετικής σκέψης.
|
Περιεχόμενο Μαθήματος
- Γενικά περί των συνήθων διαφορικών εξισώσεων και των προβλημάτων αρχικών τιμών.
- Διαφορικές εξισώσεις πρώτης τάξης ορισμένων ειδικών μορφών: Γραμμικές διαφορικές εξισώσεις. Διαφορικές εξισώσεις Bernoulli. Διαφορικές εξισώσεις Riccati. Διαφορικές εξισώσεις Clairaut . Διαφορικές εξισώσεις Lagrange . Διαφορικές εξισώσεις χωριζόμενων μεταβλητών. Ομογενείς διαφορικές εξισώσεις. Διαφορικές εξισώσεις αμέσως ολοκληρώσιμες και ολοκληρωτικοί παράγοντες. Διαφορικές εξισώσεις δεύτερης τάξης αναγόμενες σε εξισώσεις πρώτης τάξης.
- Ένα θεώρημα ύπαρξης και μονοσήμαντου για συνήθεις διαφορικές εξισώσεις πρώτης τάξης.
- Γραμμικές διαφορικές εξισώσεις: Γενικά. Ομογενείς γραμμικές διαφορικές εξισώσεις. Mη ομογενείς γραμμικές διαφορικές εξισώσεις. Γραμμικές διαφορικές εξισώσεις με σταθερούς συντελεστές.
- Γραμμικά διαφορικά συστήματα: Γενικά. Επίλυση γραμμικών διαφορικών συστημάτων με τη μέθοδο της απαλειφής.
- Δυναμοσειρές λύσεις γραμμικών διαφορικών εξισώσεων δεύτερης τάξης: Ομαλά και (κανονικά ή μη κανονικά) ανώμαλα σημεία. Δυναμοσειρές λύσεις γύρω από ομαλά σημεία. Δυναμοσειρές λύσεις γύρω από κανονικά ανώμαλα σημεία. Γραμμικές μερικές διαφορικές εξισώσεις πρώτης τάξης. Επίλυση διαφορικών εξισώσεων με μετασχηματισμούς Laplace.
- Γραμμικές μερικές διαφορικές εξισώσεις δεύτερης τάξης: Ταξινόμηση των γραμμικών μερικών διαφορικών εξισώσεων δεύτερης τάξης. Αναγωγή στις κανονικές μορφές. Ορισμένες εφαρμογές σε άλλες Επιστήμες των συνήθων διαφορικών εξισώσεων.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης
|
Διαλέξεις στην αίθουσα
|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
|
|
Οργάνωση Διδασκαλίας
|
Δραστηριότητα
|
Φόρτος Εργασίας Εξαμήνου
|
Διαλέξεις (13Χ5)
|
65
|
Αυτοτελής Μελέτη
|
100
|
Επίλυση Ασκήσεων - εργασίες
|
22.5
|
Σύνολο Μαθήματος
|
187.5
|
|
Αξιολόγηση Φοιτητών
|
Γραπτή τελική εξέταση σε Ασκήσεις και Θεωρία (100%)
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Χ. Φίλος, Μία Εισαγωγή στις Διαφορικές Εξισώσεις
- R. Agarwal, D. O’Regan, H. Agarwal, Introductory Lectures on Ordinary Differential Equations
- F. Ayres, Differential Equations